Quantifying and Optimizing Failure Tolerance of a Class of Parallel Manipulators
نویسندگان
چکیده
For any robotic system, fault tolerance is a desirable property. This work uses a comparative approach to investigate fault tolerance and the associated problem of reduced manipulability of robots. An important result in combinatorial matrix theory is first obtained. Its consequent modifications are then applied to the theory of fault tolerance of robotic manipulators. It is shown that for a certain class of parallel manipulators, the mean squared relative manipulability over all possible cases of a given number of actuator failures is always constant irrespective of the geometry of the manipulator. A theorem formulates the value of the mean squared relative manipulability. It is shown that this value depends only upon the number of simultaneous joint failures, the nominal number of joint degrees of freedom and the nominal task degrees of freedom. It is difficult to predict specific failures at the design stage and as such failure of any actuator is considered equally likely. In this context, optimal fault tolerant manipulability is quantified. The theory is applied to a special class of parallel manipulators called Orthogonal Gough-Stewart Platforms (Orthogonal GSPs or OGSPs). A class of two-group symmetric OGSPs which inherently provide for optimal fault tolerant manipulability under a single failure is developed.
منابع مشابه
Interval Analysis of Controllable Workspace for Cable Robots
Workspace analysis is one of the most important issues in the robotic parallel manipulator design. However, the unidirectional constraint imposed by cables causes this analysis more challenging in the cabledriven redundant parallel manipulators. Controllable workspace is one of the general workspace in the cabledriven redundant parallel manipulators due to the dependency on geometry parameter...
متن کاملNear-Minimum-Time Motion Planning of Manipulators along Specified Path
The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...
متن کاملEvaluating the Fault Tolerance of a Parallel Manipulator Based on Relative Manipulability Indices
In this article, the authors investigate the fault tolerance of manipulators in their nominal configuration. In this work, fault tolerance is measured in terms of the worst case relative manipulability index. While this approach is applicable to both serial and parallel mechanisms, it is especially applicable to parallel mechanisms with a limited workspace. It is first shown that the relative m...
متن کاملTrajectory Optimization of Cable Parallel Manipulators in Point-to-Point Motion
Planning robot trajectory is a complex task that plays a significant role in design and application of robots in task space. The problem is formulated as a trajectory optimization problem which is fundamentally a constrained nonlinear optimization problem. Open-loop optimal control method is proposed as an approach for trajectory optimization of cable parallel manipulator for a given two-end-po...
متن کاملSystematic integrated approach to quantifying preventive diagnostics in a “smart” transport system
One of the main tasks facing all European countries for the next few years is the creation of the most dynamically organized transport sector. The constant passenger and freight traffic lead to congestions and pollutions at the transport highways, having negative impact on a person. Thus, introduction of new technologies, addressing the interrelated problems of optimizing transport flows and im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012